The First Transistor

Co-inventors of the first transistor at Bell Laboratories: Dr. William Shockley (seated); Dr. John Bardeen (left); Dr. Walter H. Brattain. (Courtesy of AT\&T
Archives.)
Dr. Shockley Born: London,
England, 1910 PhD Harvard, 1936
Dr. Bardeen Born: Madison, Wisconsin, 1908 PhD Princeton, 1936
Dr. Brattain Born: Amoy, China, 1902
PhD University of Minnesota, 1928
All shared the Nobel Prize in
1956 for this contribution.

Construction

- 3-Layer Semiconductor device
- 2 p-layers and one n-layer or vise versa
- pnp or npn types
- Two pn junctions, each of them can be either forward or reverse biased
- This results in 4 possible modes of operation

Bipolar junction Transistor_ (BJT):

BJT:
1.It's a semiconductor device that can amplify electı signals such as radio or television signals.

2. Its essential ingredient of every electronic circuits; from the simplest amplifier or oscillator to the most elaborate digital computer.
3. It's a three terminal device;

Base, Emitter, and Collector.

There are two type of BJT:

$>$ npn type
$>$ pnp type

Transistor structure:

Fall 2015-2016

Transistor biasing:

\checkmark In order to operate properly as an amplifier, it's necessary to correctly bias the two pn-junctions with external voltages.
\checkmark Depending upon external bias voltage polarities used; the transistor works in one of four regions (modes). npn transistor modes of
\checkmark For transistor to be used as an Active device (Amplifier); the emitter-base junction must be forward bias, while the collector-base junction must be reverse biased.

	operation		
Junction/ Mode	BE	BC	Remarks
Saturation Mode	Forward	Forward	Equivalent to short circuit Ic=lc(sat) $\mathrm{Vce}=\mathrm{Vce}(\mathrm{sat})=\sim 0.2 \mathrm{~V}$
Active Mode (Linear Region)	Forward	Reverse	Ic proportional to lb Vce defined by circuit
Cut-off Mode	Reverse	Reverse	Equivalent to open circuit $\mathrm{Ic}=\mathrm{Ib}=0$ Vce defind by circuit
Inverse Mode	Reverse	Forward	Rarely used and will not be discussed in this course

In active region

\checkmark The base region is thin and lightly doped
\checkmark The emitter-base junction is forward biased, thus the depletion region at this junction is reduced.
\checkmark The base-collector junction is reverse biased, thus the depletion region at this junction is increased.

\checkmark The forward biased BE-junction causes the electrons in the n-type emitter to flow toward the base; this constitutes the emitter current \boldsymbol{I}_{E}.
\checkmark As these electrons flow through the P-type base; they tend to recombine with holes in p -type base.
\checkmark Since the base region is lightly doped; very few of the electrons injected into the base from the emitter recombine with holes to constitute base current I_{B} and the remaining large number of electrons cross the base and move through the collector region to the positive terminal of the external DC source; this constitute collector current I_{C}
\checkmark There is another component for I_{C} due to the minority carrier; $I_{\text {Сво }}$

$I_{C}=\alpha I_{E}+I_{C B o}$
$I_{E}=I_{C}+I_{B}$
$I_{C}=\alpha\left(I_{C}+I_{B}\right)+I_{C B o}$
$\not I_{C}=\frac{\alpha}{1-\alpha} I_{B}+\frac{1}{1-\alpha} I_{C B O}$
Let Beta, $\beta=\frac{\alpha}{1-\alpha}$

$\boldsymbol{*}_{\boldsymbol{C}}=\beta \boldsymbol{I}_{\boldsymbol{B}}+(\beta+\mathbf{1}) \boldsymbol{I}_{\boldsymbol{C B}}$
$I_{C}=\beta I_{B}+I_{C E O}$
$\begin{array}{lll}\alpha=\frac{\alpha}{1-\alpha} & \begin{array}{l}\text { If } \alpha=0.99 \\ \text { If } \alpha=0.995 \\ \longrightarrow\end{array} & \beta=99 \\ \beta=199\end{array}$

In active region:

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{C}}=\boldsymbol{\alpha} \boldsymbol{I}_{\boldsymbol{E}}+\boldsymbol{I}_{\boldsymbol{C B o}} \\
& \boldsymbol{I}_{\boldsymbol{C}}=\beta \boldsymbol{I}_{\boldsymbol{B}}+(\beta+\mathbf{1}) \boldsymbol{I}_{\boldsymbol{C B o}} \\
& \boldsymbol{I}_{\boldsymbol{C}}=\beta \boldsymbol{I}_{\boldsymbol{B}}+\boldsymbol{I}_{\boldsymbol{C E} o} \\
& \boldsymbol{I}_{\boldsymbol{E}}=\boldsymbol{I}_{\boldsymbol{C}}+\boldsymbol{I}_{\boldsymbol{B}}
\end{aligned}
$$

$$
\beta=\frac{\alpha}{1-\alpha}
$$

Approximate relationships:
$I_{C} \cong \alpha I_{E} \cong I_{E}$
$I_{C} \cong \beta I_{B}$
$I_{E} \cong(\beta+1) I_{B}$

Basic BJT Amplifiers Circuits

$\alpha \approx \frac{I_{C}}{I_{E}}$
BJT in Active Mode $\quad I_{\mathrm{E}}=I_{\mathrm{B}}+I_{\mathrm{C}}$ $\beta \approx \frac{I_{C}}{I_{B}} \quad$---common-emitter current gain
$\beta=\frac{\alpha}{1-\alpha}$

BJT DC Analysis

- Make sure the BJT current equations
 and region of operation match

$$
\begin{aligned}
& V_{\mathrm{BE}}>0, \\
& V_{\mathrm{BC}}<0, \rightarrow V_{\mathrm{E}}<V_{\mathrm{B}}<V_{\mathrm{C}}
\end{aligned}
$$

- Utilize the relationships (β and $\alpha)$
between collector, base, and emitter
currents to solve for all currents $\left\{\begin{array}{l}I_{E}=I_{C}+I_{B}=(1+\beta) I_{B} \\ I_{C}=\beta I_{B} \\ I_{C}=\alpha I_{E}\end{array}\right.$

Basic BJT Amplifiers Circuits

C-E Circuits I-V Characteristics
Base-emitter Characteristic(Input characteristic)

$i_{B(t)}=I_{B O}\left(e^{\frac{V_{B E}(t)}{\eta V_{T}}}-1\right)$
$i_{B(t)} \cong I_{B o}\left(e^{\frac{V_{B E}(t)}{\eta V_{T}}}\right)$

Basic BJT Amplifiers Circuits

C-E Circuits I-V Characteristics
Collector characteristic (output characteristic)

$$
i_{C}=\left.f_{\left(V_{C E}\right)}\right|_{i_{B}=C}
$$

Basic BJT Amplifiers Circuits

C-E Circuits I-V Characteristics

Collector characteristic (output characteristic) $\quad i_{C}=\left.f_{\left(V_{C E}\right)}\right|_{i_{B}=C}$

Basic BJT Amplifiers Circuits

Once the base current is high enough to produce saturation, further increases in base current have no effect on the collector current and the relationship $I_{C}=\beta I_{B}$ is no longer valid. When $V_{C E}$ reaches its saturation value, $V_{C E(\text { sat })}$, the base-collector junction becomes forward-biased.

Basic BJT Amplifiers Circuits

Basic BJT Amplifiers Circuits

C-E Circuits I-V Characteristics

Collector characteristic

1. In the cutoff region :

$$
\boldsymbol{I}_{\boldsymbol{B}}=\boldsymbol{I}_{C}=\boldsymbol{I}_{E}=\mathbf{0}
$$

2. In the active region :

$$
\begin{aligned}
& I_{C}=\alpha I_{E} \\
& V_{B E}=0.8 v \quad, \quad \mathbf{S i} \quad, \quad n p n \\
& I_{C}=\beta I_{B} \\
& \boldsymbol{I}_{\boldsymbol{E}}=(\beta+\mathbf{1}) I_{\boldsymbol{B}} \\
& V_{B E}=0.7 v \quad, \quad \mathrm{Si} \quad, \quad \mathrm{npn} \\
& V_{B E}=-0.7 v \quad, \quad \text { Si } \quad, \quad \text { pnp } \\
& V_{C E}>V_{C E, s a t}=0.2 v, \quad \mathrm{Si}, \quad \mathrm{npn} \\
& V_{C E}<V_{C E, s a t}=-0.2 v, \quad \text { Si } \quad \text { pnp }
\end{aligned}
$$

In General

1)In the active region:

$$
\begin{aligned}
& I_{B}=\frac{V_{B B}-V_{B E}}{R_{B}} \\
& I_{C}=\beta I_{B} \\
& V_{C E}=V_{C C}-R_{C} I_{C}
\end{aligned}
$$

$$
\text { As }: R_{B} \downarrow, I_{B} \uparrow, I_{C} \uparrow, V_{C E}
$$

2) In the saturation region:

$$
\begin{aligned}
& V_{C E}=V_{C E, s a t}=0.2 v \quad, \quad \mathrm{Si} \quad, \quad \mathrm{npn} \\
& I_{C}=I_{C, s a t}=\frac{V_{C C}-V_{C E, s a t}}{R_{C}}
\end{aligned}
$$

Assume that the transistor in the active region:
KVL: $\quad 5=200 k I_{B}+V_{B E}$

$$
\begin{aligned}
& I_{B}=\frac{5-0.7}{200 k}=0.0215 \mathrm{~mA} \\
& I_{C}=\beta I_{B}=100 * 0.0215=2.15 \mathrm{~mA} \\
& \text { KVL: } \quad 10=R_{C} I_{C}+V_{C E} \\
& V_{C E}=10-R_{C} I_{C} \\
& * V_{C E}=10-3 k * 2.15 m A=3.55 \mathrm{Volt}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \quad V_{C E}>V_{C E, s a t} \ggg \text { The transistor is in the active region } \\
& >V_{C E Q}=3.55 \text { Volt } \\
& >I_{C Q}=2.15 \mathrm{~mA}
\end{aligned}
$$

Let define: $I_{B}(\min)=\frac{I_{C, \text { sat }}}{\beta}$

$I_{B}($ min $)=\frac{I_{C, \text { sat }}}{\beta}$
\& If $I_{B}>I_{B}(\min)$ the transistor is in the saturation region.
$\$$ If $I_{B}<I_{B}(\mathrm{~min})$ the transistor is in the Active region.

Determine Mode of Operation of BJT?

- 1) Since $B E$ junction is forward biased $==>$ Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in Active Mode

$$
\begin{aligned}
& 5=200 \mathrm{k} \Omega . \mathrm{I}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}}+2 \mathrm{k} \Omega \cdot \mathrm{I}_{\mathrm{E}} \\
& \text { But, } \quad \mathrm{I}_{\mathrm{E}}=(1+\beta) \mathrm{I}_{\mathrm{B}} \\
& \text { Solve for } \mathrm{I}_{\mathrm{B}}=\frac{5-\mathrm{V}_{\mathrm{BE}}}{200 \mathrm{k} \Omega+(1+\beta) .2 \mathrm{k} \Omega} \\
& \mathrm{I}_{\mathrm{B}}=\frac{5-0.7}{200 \mathrm{k} \Omega+(1+100) .2 \mathrm{k} \Omega} \\
& =\frac{4.3 \mathrm{~V}}{402 \mathrm{k} \Omega}=10.7 \mu \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}} \\
& =(100) \cdot(10.7 \mu \mathrm{~A}) \\
& =1.07 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{E}}=(\beta+1) \mathrm{I}_{\mathrm{B}} \\
& =1.0807 \mathrm{~mA}
\end{aligned}
$$

Now we find $V_{C E}$ from output circuit
$10-\mathrm{I}_{\mathrm{C}} .3 \mathrm{k} \Omega-\mathrm{I}_{\mathrm{E}} .2 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{CE}}$
$\Rightarrow \mathrm{V}_{\mathrm{CE}}=4.63 \mathrm{~V}>\mathrm{V}_{\mathrm{CE}(\text { sat })}$

$\therefore \mathrm{Q} 1$ is in active mode and the assumption is true we can also verify that the BC junction is reverse biassed which is required so that the BJT operates in active mode
$10-\mathrm{I}_{\mathrm{C}} .3 \mathrm{k} \Omega-\mathrm{I}_{\mathrm{E}} .2 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{CE}}$
$\Rightarrow \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CB}}-\mathrm{V}_{\mathrm{EB}}$
$\Rightarrow \mathrm{V}_{\mathrm{CB}}=\mathrm{V}_{\mathrm{CE}}-\mathrm{V}_{\mathrm{BE}}=4.63-0.7=3.93 \mathrm{~V}$
$\therefore \mathrm{V}_{\mathrm{BC}}=-\mathrm{V}_{\mathrm{CB}}=-3.33 \mathrm{~V}$
$B C$ junction is reverse biased

OR Second method: Assume Saturation

- 1) Since $B E$ junction is forward biased ==> Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in saturation mode:
$10-\mathrm{I}_{\mathrm{C}(\mathrm{san})} \cdot 3 \mathrm{k} \Omega-\mathrm{I}_{\mathrm{E}(\mathrm{san}} \cdot 2 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{CE}(\mathrm{San})}$ assume $I_{E(s a t)}=I_{C(s a t)}$

$$
\begin{aligned}
& \therefore I_{C(\text { sat) })}=\frac{10-0.2}{5 \mathrm{k} \Omega}=1.96 \mathrm{~mA} \\
& I_{\mathrm{B} \text { (min) })}=\frac{I_{\mathrm{C}(\mathrm{sat})}}{\beta}=19.6 \mu \mathrm{~A}
\end{aligned}
$$

BJT as switch:

Example:

Find $V_{o}(t)$ for the input given below:

Solution:

$*$ Let $V_{i}(t)=+12$ volt
Calculate $V_{t h} \& R_{t h}$

$R_{t h}=15 k / / 100 k=\frac{100 k * 15 k}{15 k+100 k}=13 k$
$V_{t h}=8.9$ volt Proof!!

Since the base emitter
junction is forward bias; the transistor could be either in the active or the saturation region

Assume that the transistor in the saturation region
$I_{C}=I_{C, s a t}=\frac{V_{C C}-V_{C E, s a t}}{R_{C}}=\frac{12-0.2}{2.2 k}=5.36 \mathrm{~mA}$
$I_{B}(\min)=\frac{I_{C, s a t}}{\beta}=\frac{5.36 \mathrm{~mA}}{30}=0.18 \mathrm{~mA}$

$$
I_{B}=\frac{V_{t h}-V_{B E}}{R_{T H}}=\frac{8.9-0.8}{13 k}=0.62 \mathrm{~mA}
$$

$\$$ Since $I_{B}>I_{B}(\min)$ the transistor is in the saturation region.

$$
\begin{aligned}
& \checkmark V_{o}=V_{C E, s a t}=0.2 \text { volt } \\
& \checkmark I_{C}=5.36 \mathrm{~mA}
\end{aligned}
$$

$$
\dot{\text { Let }} V_{i}(t)=0 \text { volt }
$$

Since $V_{\text {th }}=-1.56$ volt
Base emitter junction is revers biased the transistor in cutoff region

$$
\begin{aligned}
& \checkmark V_{o}=V_{C E}=12 \text { volt } \\
& \checkmark I_{C}=0 \mathrm{~mA}
\end{aligned}
$$

The circuit acts as inverter or not gate

